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Non-adiabatis parametric excitation of oscillator- type 
systems: 

R G Agayevat 
PN Lebedev Institute of Physics, Moscow, USSR 

Received 18 June 1979. in final form 8 October 1979 

Abstract. A harmonic quantum oscillator and the motion of charged particles in a magnetic 
field have been considered, the dependence on time of the magnetic field and the oscillator 
frequency being such that they permit us to keep an exact record of non-adiabaticity. For 
these systems, exact solutions, motion integrals, coherent states and Green functioris have 
been constructed and proper amplitudes and transition probabilities calculated. One of the 
possible practical applications of the results obtained has been pointed out, namely their use 
for the interpretation of experiments with electronic vibrational transitions in molecules. 

1.. Introduction 

A non-stationary harmonic oscillator with an arbitrarily time-dependent vibration 
frequency and the motion of a charged particle in a time-dependent magnetic field are 
dealt with in a number of papers. For example, Husimi (1953) has obtained a solution 
of Schrodinger’s equation. Green’s function and the matrix element of an evolution 
operatox in the expailded form for a one-dimensional quantum oscillator with a varying 
frequency. 

Lewis and Riesenfeld (1969) have developed a theory of time-dependent invariants 
for non-stationary quantum systems and applied it to a one-dimensional harmonic 
oscillator with a varying frequency and to the motion of a charged particle in a 
time-dependent electromagnetic field. 

The authors of another paper (Malkin et a1 1970) have studied the quantum- 
mechanical problems of an N-dimensional oscillator with an arbitrary dependence of 
frequencies on time and those of a non-relativistic charged particle in an axially 
symmetrical non-stationary electromagnetic field. They have also shown that a quan- 
tum oscillator problem involves the solution of an appropriate equation for a classical 
oscillator. 

Only approximate solutions are usually possible for probiems associated with 
oscillator-type non-stationary systems. So, for instance, a harmonic oscillator having a 
frequency varying slowly with time was treated by Kulsrud (1 957) and Kruskal(l961) 
in connection with the working out of the theory of adiabatic invariants. Elsewhere 
(Zeldovich and Starobinsky 197 1) an asymptotic solution to a classical oscillator 
equation for the case of large impulses was obtained in a study concerning the problems 
of particle production and vacuum polarisation in an anisotropic gravitational field. 
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1686 R G Agayeva 

At present, several papers are known to deal with a non-stationary harmonic 

An equation for a classical oscillator with a varying frequency with the forms 
oscillator involving a specific dependence of frequency on time. 

w 2 ( t ) =  C1(1+C2t+C3t2) and W 2 ( t )  = c+y 
is solved in an earlier paper (Grib et a1 1974), in connection with a problem involving 
the production of particles from a vacuum in a non-stationary isotropic universe. It is 
known (Malkin et a1 1970) that exact solutions for a non-stationary oscillator can also 
be obtained at an instantaneous frequency variation from one constant value to another 
for a frequency having the form w 2 ( t )  = C+ (C1/cosh2 Czt) and for a varying frequency 
complying with the Eckart potential. 

The present paper is aimed at solving a non-stationary problem both for a one- 
dimensional harmonic quantum oscillator and for a charged particle moving in a 
magnetic field, the time dependence of the frequency (in the case of a magnetic field this 
frequency is proportional to the cyclotron frequency) being 

w = a + b  for t s O  

w ( t )  = a + b exp(-xt) -- for t 2 0, (1) 

i.e. it is aimed at determining all the linear system motion integrals, constructing the 
coherent states, and using them to calculate the Green function, the amplitude and the 
probability of transitions between the energy levels. In formulae (1) the parameters a, 
b, and x are arbitrary non-negative constants. 

In relation to the frequency, the dependence (1) under consideration in this paper 
corresponds to one more case exactly solved in explicit form, as compared to Malkin et 
a1 (1970) and Grib et a1 (1974). It should be noted that in non-stationary 
problems the above dependence (1) for w ( t )  has not been considered up to now. 
Besides, the interest displayed in the problem under consideration is due also to the fact 
that the results obtained may be used for practical purposes, for example, to interpret 
experimental data on electronic vibrational (vibronic) transitions in molecules. 

Actually, in previous reports dealing with analytical methods of studying vibronic 
spectra of polyatomic molecules, as in Doktorov et a1 (1976), an adiabatic approxima- 
tion was used, i.e. it was supposed that an electronic transition occurred instantly when 
the nuclei positions were not yet changed. 

Two other papers (Doktorov et a1 1975, Malkin and Man’ko, 1975) pointed to the 
possibility of studying the time responses of vibronic transitions in polyatomic mole- 
cules within the framework of the Born-Oppenheimer approximation, as well as the 
harmonic approximation for nuclei vibrations. In this case, the electronic motion may 
be regarded to be not instantaneous with respect to the nuclei motion, but of a 
sufficiently long duration, i.e. non-adiabatic. Such a phenomenon may be important, if 
one considers the orbit-to-orbit transition of an electron which is not a light one but a 
heavier negative muon in a polyatomic mesomolecule. Of some interest in this 
connection are the models adequate to various time processes. One such model may be 
represented by a relaxation model in which the duration of the transition process (the 
transition of an electron or a muon) is given by the dependence (1) where x-l is the 
characteristic time of the transition. The present paper deals with an investigation of 
such a model, a one-dimensional harmonic oscillator and the motion of a charged 
particle in a magnetic field being used as examples. 
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In order to provide a complete understanding, formulae relating to a quantum 
oscillator with an arbitrary time-dependence of frequency are presented in this paper, 
in conformity with an earlier paper (Malkin er a1 1970). 

2. Motion integrals for a non-stationary quantum oscillator 

Let us consider a quantum system described by the Hamiltonian 

%= t 2 /2m +$mw2(t)i2 (2) 

where x is a usual canonical coordinate, p is its conjugate momentum, and m is the 
mass. 

The wave equation has the form 

(iha/at-b2/2m -$mw2(t)x^2)+ = 0. (3) 

According to the question concerning motion integrals, discussed in the above 
report (Malkin et a1 1970), 2N independent non-Hermitian invariants must exist for 
systems with N degrees of freedom. One can make sure immediately that the operator 

A( t )  = - i (- d E ( t )  - J m f €  ( t ) )  , 
(2h)‘l2 J m  (4) 

where the function ~ ( t )  is a definite solution to the equation of the classical harmonic 
oscillator 

( 5 )  

commutes with the operator (iha/at-&) and is thus a motion integral. The following 
commutation relationship holds: 

€ + W2(t)E = 0, 

[A, A+]= 1. (6) 

Formulae ( 5 )  and (6) give the following equality, 

€E* - €*E = 2i, (7 1 

which is valid for any moment of time t. 
Let us present the motion integrals d and A+ in the form (Malkin and Man’ko 1975) 

Comparing these formulae with (4), we obtain the following expressions for the 
invariant ri0 referred to as the operator of the initial coordinate, and the invariant @o 
called the operator of the initial impulse: 
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3. Invariants for a charged particle in a non-stationary magnetic field 

Let us consider a frequency with a mass m and a charge e, moving in a classical magnetic 
field with the potential 

N r ,  t )  = f [ H ( t ) ,  rl, (10) 
where r is the position vector, and H ( t )  is a uniform magnetic field. We choose the 
z-axis along the magnetic field H, and then A, = 0. Then the motion along the z-axis is 
trivial and can be neglected. We shall consider only the motion in the xy plane. The 
Hamiltonian for such a system is 

We omit the spin-dependent term puzH inasmuch as the subsequent description is 
independent of it. 

By direct calculation one can make sure that the following operators are invariants: 

(12) 

(13) 

A(t) = f ( t ) [ e ( t ) ( f i x  +i$y) -imi(t)(y - i~ ) ] / (2hm)”~ ,  

k(t) = f ( t ) [ ~ ( t ) ( f i ~  +ifi.%)--imi(t)(x -iy)1/(2hm)”~, 

where ~ ( t )  is a certain specific solution to equation (9, 

and in this case w ( t )  should be understood not as the oscillator frequency but as 

w(t) = eH(t)/2mc. (15) 
Operators (12) and (13) commute with the operator (ihalat-g),  because a = B = 0. 

The Vronskian of the system consisting of equation ( 5 )  and an equation complex 
conjugate to equation ( 5 )  must be equal to zero. 

A straightforward calculation shows that the value ( € E *  - E € * )  is then independent 
of time, i.e. it is constant. This constant can be determined on the basis of the initial 
conditions. 

Let us suppose that for t -+ 00 and t s 0 the magnetic field assumes constant values of 
Hf and H, so that w is equal to wf and w,, respectively. Then for t d 0 we choose as a 
solution to equation ( 5 )  

(16) 

which gives a value of the constant equal to 2i. Thus, in the case of a magnetic field too, 
formula (7) is valid, and on this basis one can obtain the following commutation 
relationships: 

-1/2 
E ,  = w ,  exp(iw,t), 

[A, A+]=[&, B+]= 1, [A, 81 = [A, 6’1 = 0. (17) 

Four more invariants, namely ria, Po, Pox and pay, may be introduced, which will be 
necessary later, if one presents A, 8, A’, and 8’ as 

A -- (go+ iPox)/(2h)1’2, 

A’ = (20 - iPOx) / (2h;P2 ,  

E = ( ?0+ifi0y)/(2h)’’2, 

B+ = (Eo- iP0y)/(2h)”25 
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and uses expressions (IZj and (13). To take an example, we shall obtain 

go = $m--"2[(~f+ e*f*)l jx  + ( ~ f - ~ * f * j i l j ~  -i(if-;*f*)my -(if+i*f*)mx]. (18) 

The expression for ipox is derived from (18) at f-+ -f, whereas ?O and P o y  are obtained 
from X o  and Pox, respectively, at x ++ y, f-f*, and 

Two more integrals of motion in a magnetic field have been presented elsewhere 
(Malkin et ai  1970). These are the Hermitian operator l?=/i"d+{ and the z 
component of the angular moment i, = fi+6 - d'd. But a quantum system with four 
degrees of freedom (x, y-plane motion) can have only four independent motion 
integrals. It should be noted that only four of the invariants enumerated above are 
independent motion integrals in accordance with the four degrees of freedom of the 
system under discussion. 

4. Exact soiution of equation for E ( $ )  

From the foregoing it transpires that one should solve equation ( 5 )  to determine both 
the motion integrals of a quantum oscillator and the motion integrals in a magnetic field. 

Let us solve equation (5) for the case of the dependence: w(t) specified by formula 

For t G 0 we assume 
(1). 

c ( t ) = E ,  = w , " ~  exp(iw,tj, 

w, = a + b, b 3 0 ,  a > O ;  a, b < iy). 

In order to solve this equation at t 2 0 ,  we make the following substitution in 
equation ( 5 ) :  

x = xo cxp( - xt), 

E(tj = x P 2 y ( x ) ,  

xo=zi(w,- w f ) x - l ,  

wf = a, 

and give the notation 

- k  = i w  x-l f .  

The equation ( 5 )  reduces to the Whittaker equation 

4 ~ ~ ~ . = ( ~ ~ - 4 k ~ - t 4 1 ~ - -  1 ) ~ .  

Its solution is 

~ ( t )  = ~ - " ' [ A M ~ , - ~ ( x ) + E I W ~ , - ~ ( X ) ~  

where A and U are constants. and M and Ware Whittaker's functions (Gtadshteyn and 
Ryzhilr 1971). 

Taking into account the expression of Whittaker's functions ill terms of a degenerate 
hypergeometric function (Gradshteyn and Kyzhik 197 1) 

a 2 a ( a + l )  2 
c l !  c ( c + l )  2!  

4 ( a ,  c, 2 )  = 1 t--. -+------ -+. . . 
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and the fact that in the case under discussion 21 = 2iax-’ is not an integer, we transform 
equation (23) to the following form: 

(25) ~ ( t )  = w;”2[6(t) exp(iwft) - q( t )  exp(-iqt)]. 

Here, the time-dependent complex functions t and 77 are 

The index ‘0’ means that the appropriate values have been taken at the point t = 0. For 
the hypergeometric function 41, a = -2k +& c = 1 -2k, z = x, whereas for 42, a = 3,  
c = 1 +2k, z = x. 

The constants to and qo will be determined from the continuity conditions at the 
point t = 0 of the functions 

When calculating to and qo, we start from the equality 

1 

and e2 themselves as well as their derivatives. 

(a = 7jp = 0,  (27) 

where a is equal to the coefficient at 5, and p is equal to the coefficient at q in formula 
(25). It can be shown that equality (27) will occur only for a certain relation between a 
and p, namely the condition &p = a@. It is easy to make sure that the coefficients at 5 
and q from equation (25) satisfy this condition. With due regard for what we said about 
i, we obtain the following expression: 

i ( t )  = iJwf[5(t) exp(iwft) + v( t )  exp(-iwft)]. (28) 

Finally we have 

Substituting equations (25) and (28) into relation (7), which holds for the two 

lt(t)12-i~(t)12 = 1, (30) 

systems considered by us, we obtain the equality 

which will be used by us in subsequent calculations. 
On the basis of formula (25) one can consider a number of specific cases. 
(1) b = 0. As might be expected, in this case we obtain 

(3) %+,CO E ( t )  = w ; ” ~  [to exp(iwft) - qo exp(-i wft)]. (33) 

(4) t+m ~ ( t )  = ~ ; ~ / ~ [ t ~  exp(iwft)- qm exp(-iwft)], (34) 

where the complex numbers tm and voa are determined from equation (26) as f + CO: 

It should be noted that the knowledge of the exact expression of equation (25) 
makes it possible to construct proper coherent states and Green functions, and calculate 
the amplitudes and probabilities of transitions for the systems under discussion. 
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5. Coherent states and Green's function for an oscillator 

Now we shall construct coherent states for an oscillator with a time-dependent 
frequency (1) as normalised eigenfunctions of the motion integrals (4): 

Alat) = ala, t) (36) 

where a is an arbitrary complex number. 
Then we have 

The wavefunction la, t )  obeys the Schrodinger equation with the Hamiltonian (2) 
and the normalisation condition. Coherent states form a complete system, but they are 
not orthogonal. 

A coherent state is a generating function for the eigenfunctions of the Hermitian 
operator d'd: 

The function In, t )  obeys the condition 

where n stands for non-negative integers. 
The explicit form of eigenfunctions In, t )  can be obtained from the explicit form of 

coherent states Icy, t ) ,  if we use the generating function for the Hermite polynomials 
(Bateman and Erdelyi 1966): 

Expanding the coherent state I C Y ,  t )  in a series of the variable a, we obtain 

Functions (41) are orthonormal. 
As seen from equation (37), the coherent states of a one-dimensional oscillator with 

a time-dependent frequency are solutions of a Gaussian form, i.e. an exponential of a 
quadratic. Gaussian packets for a non-stationary one-dimensional oscillator were first 
constructed in an earlier study (Husimi 1953) where the Green function was also found 
for such a system. Using the coherent states, it is easy to obtain this Green function for 
the system under consideration with the aid of the completeness relation, by calculating 
the integral 
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As a result we obtain the following simplified expression of the Green function, as 
compared to the expression of Husimi (1953) and Malkin et a1 (1970): 

Here, 

2- 1 
sin y = - 

2i.z ’ 2 = (E1E;/ETE2)1’2 

and d2a  represents a differential of the form d2a  = d Re a d Im cy. When calculating 
expression (42), one may either integrate directly, keeping in mind equation (371, or use 
formula (38) and the formula (Bateman and Erdelyi 1966): 

In order to elucidate the physical meaning of the coherent states la, t )  and the 
integrals of motion d(t), we shall consider their limiting expressions when the vibration 
frequencies w ( t )  tend to constant values. For the sake of simplicity we suppose that 
w ( t ) =  wi for t c O  and w ( t ) =  wf when t+a, where wsf are constants (see (19) and 
(20)). Then, within the limits of t -+ fa, there are complete systems of functions, initial 
coherent states Icy, i)(E = e,) and final coherent states lp, i)(e = E,) as well as orthonor- 
malised complete systems of functions which are eigenfunctions with specified vibration 
energies, initial states In, i) and final states Im, f). 

Between the initial and final states transitions take place, and one can calculate the 
amplitude of these transitions. As the result of a quantum transition, the system will 
pass from the initial state (in our case, for example li) with E = E,) to a state with E = em 
(see formula (34)), which can be expanded in a complete system of final stationary 
functions l f ) (e=q) .  The amplitude of the probability for the system, after the 
transition, to end up in one of the possible final states, for example in I f l ) ,  is equal to the 
coefficient at I f l )  in the expansion obtained. The general expression for the transition 
amplitude relating the initial state li) to the final state I f )  is given by the matrix element 

T{=(flt+co) (44) 
where It- .m)(~ =em) is the limit as t+ m of the state It) with the initial state /i) as its 
limiting value at negative time values t + -a. 

We have chosen such initial conditions for the solution of equation ( 5 )  in order to 
have a correct limiting value as t -$ -CO for the coherent state la, t ) ,  i.e. E = E, (see (19)). 

By substituting E = E, into (4) we obtain an expression for the initial integral of 
motion a,. Then it is obvious that the states la, -CO> and In, -CO) will coincide with the 
initial states la, i) and In, i), constructed by means of operators (integrals of motion for a 
stationary oscillator) A, with the use of the same formulae which were used to construct 
the states la, t )  and In, t )  by means of operators act). That is why the expressions for the 
initial states (a, i) and In, i) are given by formulae (37) and (41), respectively, if we 
substitute w + w, and E = e, in them. 

The final operator a ,  pertaining to the constant frequency w,, and the final states 
I y, f )  and Im, f )  are obtained from formulae (4), (37) and (41) while substituting w = wf, 
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E = q, By checking directly, one can make sure that the following expansion holds for 
operator (4): 

act, -- S(t)df+ q ( t ) d J .  (45) 

The operators ko and ko introduced in 0 2 are actually initial-coordinate and 
initial-impulse operators, because they represent an invariant combination of 2, j?  and t 
and, as may be seen from ( 8 )  and (19), the operators 2o and Po reduce just to the usual 
operators of coordinates and impulses at t = 0. 

From (36) and the condition of normalisation of the functions /cy, t )  it follows that the 
mean value of d in the state la, t )((A)) is equal to the complex number a ,  and if one 
takes into account the expression of A in t e r m  of go and Po (equations (8)) then 

x* = ( m w p 2 J Z o ( t  = O), j?  = ( m ~ ~ ) l ’ ~ P ~ ( t  =0) (46) 

where cy1 = Re a, c y 2  = Im CY. Jt is known that the motion on a phase plane (a , ,  cyz) can 
be presented as the motion of a classical oscillator with coordinate x and impulse p ,  if 
one assumes a1 = v 2 M C l x  and a2 = (2/MR)”2p ( M  is the mass, and Cl is the frequency 
of a classical oscillator). It follows that a quantum oscillator in the coherent state is 
extremely close to a classical oscillator in the sense that the mean values of the initial 
coordinate (20) and the initial impulse (Fo) are similar to the coordinates x and p of a 
classical oscillator. Then by analogy with the classical oscillator, the value of /a] defines 
the classical amplitude of vibrations of the quantum oscillator. whereas the phase p(a)  
defines the classical phase of vibrations of the same oscillator (the specific expression for 
cy is taken from (46)). 

I------- 

6. Probability of transitions for a non-stationary quantum oscillator 

Now, let us direct our attention to the calculation of the amplitudes of transitions (44) 
for a non-stationary oscillator. From the very meaning of expression (44) it is clear that 
all the amplitudes we are going to consider are defined completely by the constants 
and qe (35 ) .  

The amplitudcs of transitions between various states for a one-dimensional quan- 
tum oscillator were obtained by Husimi (1953), Let us derive formulae for the 
amplitudes of transitions between coherent states: 

Given the amplitude of a transition between coherent states, one can obtain the 
amplitudes of a transition from a coherent state to a state with a specified energy 
la, t )+  In, r), and vice versa, In, t )  3 Icy, t ) ,  if the generating function of a Hermite 
polynomial (40) and formula (38) are used. 

The amplitude of a transition T,” can be calculated either by taking into account the 
fact that 7’: exp[i(lc12 + ly12)] is a generating function for associated Legendre poly- 
nomials {Malkin et al 1970): 
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or by integrating directly, with due regard for the fact that (m 3 n )  (Bailey 1948) 

+m 

exp( -ax2)K ( P  1x)Hn ( ~ 2 x 1  dx 

The numbers m and n in the above formulae are of the same parity. 
We obtain finally 

va3 = /qO3( exp(icp,,), t m  = l t m /  exp(i~6,). (50) 

The square modulus of the amplitude T r  is known to define the probability of a 
transition between the respective energy states W r .  It is of interest to consider two 
special cases of this probability: x + 00 and x + 0. 

Restricting ourselves to the second-order terms along the expansion parameter, we 
obtain the required formulae for W," at x + 00 and x -+ 0, from which we determine x in 
the two extreme cases: 

2 W r ( x ) -  Wr(A = O )  A =  - 
(Ay Wr(A = 0) 

Here 

Besides, 

In the case of m = n = 0, one can obtain a simpler formula as compared to (5 1): 

From this formula it follows that the zero term of the expansion obtained for 
W: (x + CO) coincides with the square modulus of an overlap integral, i.e. with 
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Ij ~ & ( X ) + ~ ~ ( X )  dxI2 as might be expected. In the latter expression, q ! ~ ~ ~  and are 
wavefunctions of the fundamental state of the oscillator (Landau and Lifshitz 1963) 
with frequencies wi and wf respectively. 

7. Coherent states and Green's functions for a charged particle in a non-stationary 
magnetic field 

The coherent states of a charged particle moving in a non-stationary magnetic field are 
defined as eigenfunctions of the time-dependent invariants d(t)  and B( t )  (see (12) and 
(13)): 

Ala, P, t>=  ala, P,  t ) ,  &la, P,  t )  = P(a, P, t), (55) 

It is not difficult to see that equalities (55 )  are satisfied by a function having the 
where a and p are arbitrary complex numbers. 

following form: 

/a ,  P, t )  = ( m / r r h ~ ~ ) ' / ~  exp{(iim/2h~)(x'+  la/^+ Ipl2)-iaPE*/E 

+(2m/hE2)"2[x(iaf*+~f)+ y(iPf+ af*)I). (56) 

The function la, P,  t )  satisfies the Schrodinger equation with Hamiltonian (1 1). The 

Coherent states (56) represent a generating function for Inl, n2, t )  which are 
coherent states introduced are normalised and complete, but not orthogonal. 

eigenfunctions of the time-dependent invariants I? and Lz (§ 3): 

Rlnl ,  n2, t> = (nl  +:)lnl, n2, t ) ,  Qn1, n2, t> = ( n 2 -  n l ) /n l ,  n2, t). ( 5 8 )  

The explicit form of orthonormalised eigenfunctions Inl, nz,  t )  can be obtained from 
expression (57) for (a ,  P, t )  if one uses the generating function for associated Laguerre 
polynomials (Lee 1967): 

(60) 
Using the explicit form of the coherent states la, P, t )  (56), we can define the Green 

function of the Schrodinger equation for a charged particle moving in a time-dependent 
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where RI  = (2m/h)"*(xI ~iyl)/( lell)fl ,  i 1 , 2  and 2, y have the same meaning as in (42). 
The operators ko, Yo, Pox and Poy presented in P 3 are related to the initial 

conditions of the motion, since on the one hand they are motion integrals and on the 
other hand, as seen from (16) and (18), at t = 0: 

30 = (mw,)'/2(Y - go), 90 = (mw,)1/2io, 

Pox = (mwl)l'z(x - i o ) ,  P o y  = (mwl)1'2y0, (62) 

where io = (x +$,/mw,)/2, yo = (y -$x/mwl)/2 are operators of orbit-centre coor- 
dinates, whereas ( y - j o )  and ( x - i 0 )  are operators of the relative coordinates of 
the particle under study, moving in a constant magnetic field H,. From ( 5 5 )  and the 
normalisation condition of the functions la, P, f )  it transpires that the mean values of the 
above operators amount to 

( 2 0 )  = &1/2h, 

(E;,) = Pl/% (Po,,) = P2/2h,  (63) 

($0,) = ff2/2h, 

where subscript '1' denotes the real parts, and subscript '2' stands for the imaginary 
parts of the respective values. 

If one considers the classical motion of a charged particle in a stationary uniform 
magnetic field (equal to HI in this case), with the coordinates of the centre of the circular 
orbit equal to P1/2h and P 2 / 2 h ,  and the relative coordinates equal to a1 /2h  and az /2h ,  
the quantum motion of the same particle in a coherent state is extremely close to the 
above classical motion in the sense that the mean values of (Po) and ( $ o y )  are similar to 
the coordinates of the centre of the circular orbit of the classical motion, whereas the 
mean values of (go) and (pox) are similar to the relative coordinates of the same motion. 

8. Probability of transitions for a charged particle in a non-stationary magnetic 
field 

Earlier (0 3) we supposed that as t + *CO the magnetic field assumed the values Hf and 
Hi, respectively. Based on this assumption and reasoning in the same way as in the case 
of an oscillator ( 5  5 ) ,  we shall obtain formula (43) for the amplitude of a transition from 
the initial to the final state. 

It has been established that in the case of a magnetic field the system under 
discussion passes from the initial state characterised by ei (equation (16)) into a state 
with em (equation (34)), which can be expanded in a complete set of final functions with 
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Ef (equation (31))7 the frequency being expressed in terms of a magnetic field according 
to formula (15). 

Expressions for the initial motion integrals d,, B, are obtained from (12) and (13) by 
substituting E = E , ,  f = ( W J ~ ) ” ’ E ~ ,  whereas for the final motion integrals af, Bf they 
can be obtained from the same formulae at E = Er, f = The invariants a and B as t + CO can be expressed in terms of the final operators a, and Bf as follows: 

Am = tmAf - iqmS;, 2, = tabf - iv-d;, (64) 

which is checked directly by means of (12), (13), and (34). 

coherent states /a ,  p, i) and Iy,& f): 

7’$ =(a:  a,fla, P ,  f + w ) =  5;’ e x ~ [ - ~ ( l a j ~ + l p 1 ~ + I ~ 1 ~ . t l S 1 ~ ) 1  

Taking into account the above, it is easy to calculate the amplitude relating the 

x exp[8Lu1(ps* + ay* - iy*~*r]~- iapv2)] .  (65)  

From the definition of coherent states in the form of (57) it follows that the 
amplitude T$ is a generating function for all the other amplitudes. For example, using 
the generating function for Jacobi polynomials (Malkin et a1 1970): 

e ~ p ( a h q *  -t bd C QC - cdq)  
a n~ bnLc dm? 

= f 
1/2 

n l ,n z ,ml ,mz=o  (n l !  n2! ??ti! w ! )  

where s = $(nl + ml --Inl - mlj) and pjp’”(x) is the Jacobi polynomial, one can obtain 
from the formula for Tag, by means of (57 ) ,  the amplitude of a transition in an energy 
representation, i.e. 

Were, it has been taken into account that the moment L,  1s a motion integral 
(n2 - nl  = m2 - nzl). Formula (67)  relates to the case of L, = n2 - n l  3 0. If the values L, 
are negative, subscripts 1 t, 2 should be substituted in the formula (67) .  

By calculating the probability of a transition on the basis of formula (673 in the two 
extreme cases ac+0 and x + m  of interest to us, and restricting ourselves to an 
expansion term quadratic in the parameter A, we obtain an expression differing from the 
respective expression (51) for an oscillator only by the substitution of WT + W ~ l l ~ * ,  
and in this case 
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The expression Wr,’Z* obtained here relates to the case of nz -  nl  2 0, mi 2 ni. At 
n2 - nl 3 0, mi S ni one should substitute ni mi, whereas the case of it2 - nl  < 0 is 
obtained from the previous ones by substituting subscripts 1 0 2 .  

The above discussion can be extended to cover also the case of a non-stationary 
magnetic field produced by an infinite plane of current (Dodonov et a1 1972). 

From the above it is clear that, on the basis of known transition probability values, 
one can evaluate x - l ,  the characteristic time of transition from one Landau level to 
another. 

In the case of an oscillator, x - l  is the characteristic time of a transition from the 
initial to the final stationary state. 

It is known that in the Born-Oppenheimer approximation the relative intensity of a 
vibronic line is given by the square matrix element of the transition moment. In the 
Condon approximation, however (when ignoring the dependence of the transition 
moment on the internuclear separation), this relative intensity is defined by the 
transition probability. In our case it seems to be also reasonable to use the Condon 
approximation, inasmuch as then we shall be able to evaluate x - l  from experimental 
data, on the basis of the relative intensity of vibronic lines, using the formula (51). 
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Appendix 

Using equalities (7), (26), and (29), one can obtain new relations for a degenerate 
hypergeometric function. The substitution of expressions (25) and (28), for ( ( t )  and 
~ ( t ) ,  into (29) leads to the relation 

(1 + /dl2)I4( t ,  1 +a,  bx)/4(4, 1 +a, b)I2- ldlz14(;- U ,  1 - a, W 4 G -  a, 1 - U ,  b)/’ 

= /exp[4(bx - b)]I2.  (‘41) 

Here and further Id/’= (b/2a)’(l- b/a)-’ ,  b, = b exp(-cx); a, b, c are positive and 
finite parameters, x 2 0. 

Taking into account formulae (25) and (28), and the expression for an arbitrary 
degenerate hypergeometric function ((9.213) Gradshteyn and Ryzhik 1971), one can 
transform (26) as follows: 

a , 1 -  

Among the three equalities, namely (7), (26), and (29), only two equalities are 
independent. That is why the transformation of equality (7) will not give a relation 
between degenerate hypergeometric functions, different from (Al) and (A2). 
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